Pulmonary

The Southwest Journal of Pulmonary and Critical Care publishes articles broadly related to pulmonary medicine including thoracic surgery, transplantation, airways disease, pediatric pulmonology, anesthesiolgy, pharmacology, nursing  and more. Manuscripts may be either basic or clinical original investigations or review articles. Potential authors of review articles are encouraged to contact the editors before submission, however, unsolicited review articles will be considered.

Rick Robbins, M.D. Rick Robbins, M.D.

December 2014 Pulmonary Case of the Month: Bronchiolitis in Adults

Kashif Yaqub, MD

Lewis J. Wesselius, MD

 

Department of Pulmonary Medicine

Mayo Clinic Arizona

Scottsdale, AZ

 

History of Present Illness

A 61-year-old man was admitted to the hospital with cough, dyspnea and hypoxemia. He had some prior respiratory symptoms about a month prior to admission, but his symptoms worsened recently. He was seen in Family Medicine Clinic on the day of admission and noted to have saturations of 88 – 89%.

A thoracic CT scan was done shortly after his initial symptoms but was negative for lung consolidation or pulmonary embolus. He currently was having fever with temperatures of 99 to 103 degrees and cough that was only slightly productive.

PMH, FH, SH

He had a history of hypertension and obstructive sleep apnea although he was not using continuous positive airway pressure (CPAP).

Medications

  • nifedipine
  • lisinopril/hydrochlorothiazide
  • cough medication

Physical Examination

      General: SpO2 95% on 2l/min by nasal cannula

      Chest: his breath sounds were coarse, but there were no wheezes or crackles.       

      Cardiovascular: regular rate and rhythm with no murmur noted

      Extremities: no clubbing, cyanosis or edema.

      Skin: no rashes noted.

Laboratory

      CBC: Hemoglobin 15.1 d/dL,  WBC 15.3 x 103 cells/µL, no eosinophilia.

      Procalcitonin: 0.22 ng/mL (normal < 0.15 ng/mL).    

      Nasopharyngeal swab: PCR negative for pertussis, chlamydophila and           mycoplasma pneumonia.

Radiography

His thoracic CT scan at the initial presentation of his illness about a month prior to admission was reviewed (Figure 1).

Figure 1. Representative images from thoracic CT scan in lung windows done about one month prior to admission.

 

Which of the following are appropriate at this time? (Click on the correct answer to proceed to the next panel)

  1. Cocci serology
  2. Empirically begin antibiotics for community-acquired pneumonia
  3. Repeat the thoracic CT scan
  4. Sputum culture
  5. All of the above

Reference as: Yaqub K, Wesselius LJ. December 2014 pulmonary case of the month: bronchiolitis in adults. Southwest J Pulm Crit Care. 2014;9(6):297-301. doi: http://dx.doi.org/10.13175/swjpcc149-14 PDF 

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

Role of Endobronchial Ultrasound in the Diagnosis and Management of Bronchogenic Cysts: Two Case Descriptions and Literature Review

Rene Franco-Elizondo MD

Soumya Patnaik MD

Kuan-Hsiang Gary Huang MD, PhD

Jorge Mora MD

Albert Einstein Medical Center

Philadelphia, Pennsylvania

 

Abstract

Imaging studies, such as high resolution computerized tomography (HRCT) and magnetic resonance imaging (MRI) facilitate the evaluation of mediastinal masses. However, the definite characterization of such masses can be ascertained only after tissue sampling is obtained and analyzed. Some mediastinal masses, like bronchogenic cysts, can be misdiagnosed as solid masses or lymphadenopathy in imaging studies, due to the variable densities of the cyst contents. More invasive tests, like fine needle aspiration or surgical resection of the bronchogenic cyst, may be necessary when HRCT fails to provide an initial diagnosis. We describe two such cases seen at our institution that highlight the implications of establishing a diagnosis of bronchogenic cyst with endobronchial ultrasound (EBUS) - trans-bronchial needle aspiration (TBNA) and discuss the possible therapeutic utility of EBUS-TBNA in select patients with bronchogenic cysts.

 

Abbreviation List

BAL - Bronchoalveolar lavage

CNS - Coagulase-negative Staphylococcus

CT – Computed tomography

EBUS - Endobronchial ultrasound

EUS – Endoscopic ultrasound

FOB - Fiberoptic bronchoscopy

HRCT - High resolution computerized tomography

MRI - Magnetic resonance imaging

RUL – Right upper lobe

TBNA - Trans-bronchial needle aspiration

VATS - Video-assisted thoracoscopic surgery

Introduction

Modern imaging, particularly high-resolution computed tomography (HRCT) and magnetic resonance imaging facilitate the evaluation of mediastinal masses. However, definite characterization is possible only after tissue sampling is obtained, typically through fine-needle aspiration or surgical resection. Herein, we report two cases of patients with mediastinal masses, where HRCT failed to provide a diagnosis. Bronchogenic cysts in both patients were ultimately diagnosed by endobronchial ultrasound (EBUS) and trans-bronchial needle aspiration (TBNA). The implications of establishing a diagnosis of bronchogenic cyst via EBUS-TBNA and therapeutic approaches are discussed.

Case 1

A 68-year-old African American woman with hypertension, diabetes mellitus type 2 and end-stage renal disease, on home hemodialysis, presented to the hospital with central stabbing chest pain, radiating to the back, accompanied by shortness of breath. An initial HRCT chest performed to rule out aortic dissection revealed a large subcarinal mass, measuring 2.3 cm x 6.5 cm x 3.8 cm (AP x transverse x height), that splayed the carina, exerting mass effect on the esophagus, raising suspicion of malignancy (Figure 1).

Figure 1. Subcarinal mass. Density ranged from 25-80 Hounsfield Units.

A separate 2.2 cm x 1.7 cm right paratracheal mass, mediastinal lymphadenopathy and many small prevascular lymph nodes were noted. These clinical and imaging findings were concerning for possible lymphoma.

A fiberoptic bronchoscopy (FOB), followed by blind TBNA of the subcarinal space using a Wang needle was attempted. Both, bronchoalveolar lavage (BAL) and TBNA were unrevealing. The patient was found to have persistent coagulase-negative Staphylococcus (CNS) bacteremia, with the first blood cultures being positive at the time of admission. A thorough evaluation, which included an echocardiogram and abdominal HRCT, failed to reveal a source of bacteremia, which was ultimately thought to be related to hemodialysis. Arrangements for outpatient EBUS evaluation of the mediastinal mass and lymphadenopathy were made and the patient was discharged.

A week later, she was readmitted for hypertensive emergency. EBUS was performed during this hospitalization and a cystic mass with heterogeneous-containing material was detected in the subcarinal space (Figure 2).

Figure 2 EBUS image of bronchogenic cyst and adjacent subcarinal lymph node.

The needle aspirate was sent for histological analysis and culture, but it was not possible to drain this cystic structure. Cytopathologic analysis showed bronchial and ciliated cells with abundant mucoid material and a diagnosis of bronchogenic cyst was made. Interestingly, the cultures from the aspirated material grew CNS. The patient was discharged with plans for a video-assisted thoracoscopic surgery (VATS) resection of the bronchogenic cyst as an outpatient.

Five days later, the patient was readmitted with symptoms that were concerning for sepsis, and was thus re-started on broad-spectrum antibiotics. She was found to have Enterobacter intermedius bacteremia. She subsequently underwent VATS, with direct aspiration of the bronchogenic cyst. A resection was not performed due to technical difficulties encountered during VATS. Purulent fluid was retrieved from the cyst and Enterobacter intermedius was identified upon analysis and culture of the cyst content. The patient had no further episodes of bacteremia after eight months of follow-up.

Case 2

A 43-year-old woman without significant past medical history was referred to our institute, for evaluation of a pretracheal lymph node seen on a chest HRCT (Figure 3) done for evaluation of new onset dyspnea and wheezing. Upon auscultation, a localized wheeze was noted with deep inspiration in the right upper chest. Her physical exam was otherwise unremarkable.

Figure 3. Chest CT showing subcarinal lymphadenopathy and mass. Density of mass 9-95 Hounsfield units.

A bronchoscopic exam with EBUS evaluation of lymphadenopathy was scheduled. On FOB, the patient was found to have an incidental endobronchial mass occluding the anterior segment of the right upper lobe. EBUS exam revealed an enlarged subcarinal lymph node (8 mm) with an adjacent cystic space containing homogenous hypoechoic material (Figure 4).

Figure 4. EBUS of bronchogenic cyst. A) Cyst prior to aspiration. B) Collapsed cystic cavity with enlarged lymph node now visible.

Both the lymph node and cystic space were sampled. Ten mL of serous fluid was aspirated from the cystic space, resulting in obliteration of the cavity, as visualized on the ultrasound (Figure 5).

Figure 5.Serous aspirate from cystic cavity.

Full mediastinal staging was done, and only station 11R lymph nodes were found to be enlarged and were sampled. Endobronchial biopsies, brushings and BAL were obtained from RUL endobronchial lesion. The patient was discharged home on empiric antibiotics (amoxicillin/clavulanate) for aspirated bronchogenic cyst. Subsequent fluid analysis revealed abundant macrophages and lymphocytes, consistent with cystic fluid content. Cultures of the fluid were positive for Streptococcus viridians. Lymph node sampling failed to reveal any evidence of malignancy. Interestingly, endobronchial mass biopsies, brushings and fluid cytology also failed to show evidence of malignancy. Only reactive inflammatory cells and benign bronchial elements were detected. The patient was continued on antibiotics for ten days without any evidence of infection.

A repeat bronchoscopy was performed to re-sample the endobronchial lesion. Benign elements were confirmed on the repeat biopsy. Follow up imaging has not been performed to evaluate fluid re-accumulation, since the patient has remained asymptomatic for two months.

Discussion

Mediastinal bronchogenic cysts are congenital anomalies of tracheobronchial origin; they are believed to be a result of an abnormal budding process during the development of foregut. They are often asymptomatic at presentation but can become symptomatic in 30% to 80% of cases due to infection or other complications like compressive efforts (1).

These cysts, being lined by secretary respiratory epithelium, consist of fluid of water density; however, the amount of proteinous mucus and calcium oxalate crystals in them can vary, affecting the imaging features on CT/MRI. A chest CT may reveal spherical masses with water or soft–tissue attenuation. A chest CT may misdiagnose them as soft-tissue masses in about 43% of patients. High attenuation on a chest CT can be a result of calcium oxalate or protein content, or can be due to infection of the cyst content (2, 3).

Due to the variable density in the cyst’s content, bronchogenic cysts can be misdiagnosed as masses or lymphadenopathy on non-invasive testing, as noted in our patients. EBUS can be of great help in diagnosing these lesions. Ultrasound provides an excellent delineation between tissues of different densities, and the absence of flow with color Doppler allows for differentiation from vascular structures. Ultrasonography allows a better delineation of cystic lesions and characterization of their contents (e.g. hypoechoic, isoechoic, heterogeneous, etc.), thereby providing useful diagnostic information. Needle aspiration of cyst contents can bring about not only cytological confirmation of the diagnosis, but also identification of complications such as infected bronchogenic cysts.

Our cases highlight the usefulness of EBUS in the diagnosis of bronchogenic cysts. In the first case, the diagnosis of bronchogenic cyst was made only after EBUS imaging and content aspiration were obtained, despite the initial chest HRCT specifically done to evaluate this mass. In the second case, EBUS imaging established the diagnosis in the absence of any suggestive findings on the HRCT.

The treatment of choice remains the complete surgical resection of the secreting mucosal lining, particularly in complicated cysts (11, 12). However, some authors have reported cases of successful treatment of bronchogenic cysts with EBUS-guided aspiration (4-8). In one case, a patient was followed up for eighteen months without evidence of recurrence (8). The rationale behind this approach is that complete drainage of the cyst obliterates the cyst cavity and prevents further fluid re-accumulation. In our first case, though complete drainage was not achieved with EBUS due to its thick mucoid content, aspiration of the cyst by VATS resulted in resolution without fluid re-accumulation. In our second case, resolution of the cyst was achieved via EBUS-TBNA drainage. These cases underscore the usefulness of aspiration of bronchogenic cysts as an alternative therapeutic approach to surgery in certain scenarios.

Contrary to the above mentioned cases, other case reports have pointed out life-threatening complications after bronchogenic cyst drainage with EBUS-guided FNA, such as pneumonia (9) or purulent pericardial effusion (10). As mentioned elsewhere, empiric antibiotic therapy should be given when a cystic lesion is drained via EBUS-TBNA (13). It should be noted, however, that in some of these case reports, infection post-EBUS-TBNA occurred despite giving empiric antibiotics (9), as in our first case.

The risk of infection should be underscored, as evidenced by the first case; particularly the less frequently reported possibility of bronchogenic cyst infection from bacteremia. The initial EBUS-TBNA cyst aspirate grew CNS, similarly to the blood cultures that were obtained prior to the blind TBNA sample of the mediastinal lesion. This suggests that the contamination of the cyst content could have been due to seeding from CNS bacteremia. However, the final VATS aspirate of the cyst grew Enterecoccus intermedius, which was likely to have been introduced by the EBUS-TBNA at the time of diagnosis. This infection occurred despite the use of antibiotics before and after the procedure. In this regard, the available literature is scant. In a study conducted by Steinfort et al. (14), incidence of bacteremia after EBUS-TBNA was found to be 7%, comparable to reported incidence of bacteremia from regular FOB. It is important to note that although none of these patients experienced clinical signs of infection, none of the biopsies were taken from cystic structures. Data evaluating EBUS-TBNA of mediastinal cystic lesions is conflicting. In a report of 22 patients undergoing EUS-TBNA of suspected mediastinal cyst and receiving periprocedural antibiotics, no infectious complications were found (15). However, several case reports of serious infectious complications after EBUS-TBNA have also been published (16).

Conclusion

Diagnosis of bronchogenic cysts cannot always be made with commonly used chest-imaging modalities such as X-ray or CT. EBUS has proven to be a useful diagnostic tool in the evaluation of some mediastinal masses. Although surgical resection remains the treatment of choice, complete aspiration, by VATS or EBUS, can be a successful therapeutic alternative in patients who are not candidates for surgery. However, the risks should be carefully assessed in each patient, with particular awareness of potential infectious complications. When this approach is taken, empiric antibiotics are recommended.

References

  1. St-Georges R, Deslauriers J, Duranceau A, Vaillancourt R, Deschamps C, Beauchamp G, Pagé A, Brisson J. Clinical spectrum of bronchogenic cysts of mediastinum and lung in adult. Ann Thorac Surg. 1991;52:6-13. [CrossRef] [PubMed]
  2. Mc Adams HP, Kirejczyk WM, Rosado-de-Christenson ML, Matsumoto S. Bronchogenic cyst: imaging features with clinical and histopathological correlation. Radiology. 2000;217:441-6. [CrossRef] [PubMed] 
  3. Patel SR, Meeker DP, Biscotti CV, Kirby TJ, Rice TW. Presentation and management of bronchogenic cysts in adult. Chest 1994;106:79-85. [CrossRef] [PubMed] 
  4. Aragaki-Nakahodo AA, Guitron-Roig J, Eschenbacher W, Benzaquen S, Cudzilo C. Endobronchial ultrasound-guided needle aspiration of a bronchogenic cyst to liberate from mechanical ventilation: case report and literature review. J Bronchology Interv Pulmonol. 2013;20(2):152-4. [CrossRef] [PubMed]
  5. Meseguer SM, Franco-Serrano J. Drainage of a mediastinal cyst by endobronchial ultrasound-guided needle aspiration. Arch Bronconeumol. 2010;46(4):207-8. [CrossRef]  [PubMed]
  6. Dhand S and Krimsky W. Bronchogenic cyst treated by endobronchial ultrasound drainage. Thorax. 2008;63(4):386. [CrossRef] [PubMed]
  7. Galluccio G, Lucantoni G. Mediastinal bronchogenic cyst's recurrence treated with EBUS-FNA with a long-term follow-up. Eur J Cardiothoracic Surg. 2006; 29(4):627-9. [CrossRef] [PubMed]
  8. Casal RF, Jimenez CA, Mehran RJ, Eapen GA, Ost D, Sarkiss M, Morice RC. Infected mediastinal bronchogenic cyst successfully treated by endobronchial ultrasound-guided fine-needle aspiration. Ann Thorac Surg. 2010; 90(4):e52-3. [CrossRef] [PubMed]
  9. Hong G, Song J, Lee KJ, Jeon K, Koh WJ, Suh GY, Chung MP, Kim H, Kwon OJ, Um SW. Bronchogenic cyst rupture and pneumonia after endobronchial ultrasound-guided transbronchial needle aspiration: a case report. Tuberc Respir Dis (Seoul). 2013;74(4):177-80. [CrossRef] [PubMed] 
  10. Gamrekeli A, Kalweit G, Schäfer H, Huwer H. Infection of a Bronchogenic cyst after ultrasonography-guided fine needle aspiration. Ann Thorac Surg. 2013;95(6):2154-5. [CrossRef] [PubMed]
  11. Cioffi U, Bonavina L, De Simone M, Santambrogio L, Pavoni G, Testori A, Peracchia A. Presentation and surgical management of bronchogenic and esophageal duplication cysts in adults. Chest. 1998;113(6):1492-6. [CrossRef] [PubMed] 
  12. Anantham D, Phua GC, Low SY, Koh MS. Role of endobronchial ultrasound in the diagnosis of bronchogenic cysts. Diagn Ther Endosc. 2011, 2011:468237. [CrossRef] [PubMed]
  13. Haas AR. Infectious complications from full extension endobronchial ultrasound transbronchial needle aspiration. Eur Respir J. 2009;33(4):935-8. [CrossRef] [PubMed]
  14. Steinfort DP, Johnson DF, Irving L.B. Incidence of bacteraemia following endobronchial ultrasound-guided transbronchial needle aspiration. Eur Respir J. 2010:36(1):28-32. [CrossRef] [PubMed] 
  15. Fazel A, Moezardalan K, Varadarajulu S, Draganov P, Eloubeidi MA. The utility and the safety of EUS-guided FNA in the evaluation of duplication cysts.GastrointestEndosc. 2005; 62(4):575-80. [CrossRef] [PubMed]
  16. Jenssen C, Alvarez-Sánchez M. V., Napoléon B and Faiss S. Diagnostic endoscopic ultrasonography: assessment of safety and prevention of complications. World J Gastroenterol. 2012;18(34):4659–76. [CrossRef] [PubMed]

Reference as: Franco-Elizondo R, Patnaik S, Huang K-H G, Mora J. Role of endobronchial ultrasound in the diagnosis and management of bronchogenic cysts: two case descriptions and literature review. Southwest J Pulm Crit Care. 2014;9(2):115-22. doi: http://dx.doi.org/10.13175/swjpcc096-14 PDF

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

July 2014 Pulmonary Case of the Month: Where Did It Come From?

Colin B. Fitterer, MD

James M. Parish, MD

 

Mayo Clinic Arizona

Scottsdale, AZ

  

History of Present Illness

A 67 year old man presented with worsening cough and shortness of breath. He has a history of metastatic colon cancer first diagnosed in 2010. He was treated with radiation and chemotherapy (FOLFOX) but unfortunately developed new pulmonary nodules in October, 2013 which were metastatic colon cancer on biopsy. In February 2014 he developed a right parietal brain mass which was resected. Thoracic CT scan at that time showed progression of the pulmonary nodules. He has also noted a 30 pound weight loss over the past 6 months and an enlarging right supraclavicular lymph node.

PMH, FH, SH

In addition to the colon cancer, he has previous diagnoses of type 2 diabetes mellitus, hypertension, allergic rhinitis, and vitamin D deficiency. He is married and a recently retired railroad engineer. He has no history of tobacco use. There is a positive family history of lung cancer but no colon cancer.

Physical Examination

Vital Signs:  Temperature 36.8, pulse 98, respirations 18, blood pressure 144/70, SpO2 91% on 3 L via nasal cannula.

Pertinent findings include:

  • A large firm and fixed right supraclavicular lymph node that is nonpainful on palpation.
  • Diminished breath sounds across all right posterior lung fields with dullness to percussion. 
  • Palpable liver edge is palpable approximately 2cm below the right costal margin.

Laboratory Analysis

Admission laboratory values include a hemoglobin of 11.1 g/dL but with a normal white blood cell count and platelet count. Electrolytes, blood urea nitrogen, creatinine, and liver enzymes were all within normal limits.  Serum chemistries are within normal limits.

Radiography

A chest x-ray (Figure 1A) and chest CT (Figure 1B) were performed.

 

Figure 1. Admission AP (Panel A) and representative image from the thoracic CT scan (Panel B).

Which of the following is the best interpretation of the radiographic findings? (Click on the correct answer to proceed to the next panel)

  1. Large right pleural effusion
  2. Right lung atelectasis
  3. Right lung pneumonia
  4. Right lung pulmonary edema
  5. None of the above

Reference as: Fitterer CB, Parish JM. July 2014 pulmonary case of the month: where did it come from? Southwest J Pulm Crit Care. 2014;8(6):1-7. doi: http://dx.doi.org/10.13175/swjpcc080-14 PDF

 

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

Wireless Capsule Endo Bronchoscopy

 David M. Baratz, MD

Sandra Till, DO

 

Banner Good Samaritan Medical Center

Phoenix, AZ

 

Case Presentation

History of Present Illness

A 67 year-old man presents 10 days after swallowing a capsule endoscopy camera that was never retrieved.  The wireless capsule was swallowed asymptomatically for evaluation of heme positive stools after negative upper and lower endoscopies. Patient noted that the evening after swallowing the camera he developed mild shortness of breath and cough. The cough and shortness of breath were persistent and worsened while lying down and when moving positions. He denied prior issues with swallowing or aspiration.

Review of Systems

Negative other than what is noted above.

PMH, SH, and FH

Past medical history: coronary artery disease, peripheral vascular disease, hyperlipidemia

Surgical history: femoral-popliteal bypass, previous shoulder and back surgery

Social history: 1 pack/day of cigarettes for 50 years, prior alcohol usage but not current, no illicit drugs

Family history: no pulmonary diseases

Physical Exam

Vital signs: temperature 36.7º C, heart rate 86 beats per minute, respiratory rate 15 breaths/min, blood pressure 156/69, and oxygen saturation 97% while breathing  room air

Lungs: bilateral wheezing with left greater than right.

Otherwise examination was normal.

Radiography

The admission chest x-ray is shown in figure 1.

Figure 1. Chest x-ray with capsule in left main bronchus (arrow).

A thoracic CT scan is shown in Figure 2.

Figure 2. Thoracic non-contrast CT scan with capsule in left main bronchus (arrow).

Bronchoscopy was performed under general anesthesia using a laryngeal mask airway (LMA). Bronchoscopic examination revealed a white capsule lodged in left main bronchus (Figure 3).

Figure 3. Bronchoscopy with capsule in left main bronchus.

A mesh basket was used to retrieve of the capsule from the left main bronchus, but in the carina the capsule slipped out of the basket. Attempts to use snare and retrieval forceps failed due to the slippery plastic housing covering the capsule.  The mesh basket was used again with capture of the capsule. Once the capsule was retrieved, the LMA was removed to avoid en bloc damage to the vocal cord while removing the capsule. The LMA was then reinserted for continued ventilation after the capsule had been obtained.

Figure 4. Intact capsule after removal.

Literature Review

Capsule endoscopy has been available since 2001 and is used for the evaluation of obscure gastrointestinal bleeding and iron deficiency anemia. The retention rate is 1-2%, with capsules typically found in diverticula, hernias, or other bowel abnormalities (1-3). It is reported that approximately 2% of patients will have difficulty or inability to swallow the capsule.  Review of 13 available cases of aspiration of wireless endoscopy capsules revealed that about 50% of the time capsules are spontaneously expulsed by coughing, and the other half requiring bronchoscopic intervention for removal (Table 1).

Table 1. Summary of cases with aspirated wireless endoscopy capsules.

Risks for aspiration include underlying neurologic disease, elderly patients, and patient with previous difficulties with swallowing. Signs of capsule aspiration vary from asymptomatic to shortness of breath, cough, and tachypnea (1-12).

The capsule is a wirelesses, 11 mm X 26 mm capsule with a miniature video camera, light emitting diodes, batteries, transmitter, and an antenna. It is slippery, nonbiodegradable, has plastic housing, and weighs less than 4 grams (13).

This case represents a rare, but important complication of wireless capsule endoscopy requiring evaluation and possible intervention. Although this complication is rare, it is likely we will see increasing frequency as capsule utilization increases.

References

  1. Guy T, Jouneau S, D'Halluin PN, Lena H. Asymptomatic bronchial aspiration of a video capsule. Interact Cardiovasc Thorac Surg. 2009;8(5):568-70. [CrossRef] [PubMed] 
  2. Depriest K, Wahla AS, Blair R, Fein B, Chin R Jr. Capsule endoscopy removal through flexible bronchoscopy. Respiration. 2010;79(5):421-4. [CrossRef] [PubMed] 
  3. Koulaouzidis A, Pendlebury J, Douglas S, Plevris JN. Aspiration of video capsule: rare but potentially life-threatening complication to include in your consent form. Am J Gastroenterol. 2009;104(6):1602-3. [CrossRef] [PubMed] 
  4. Choi HS, Kim JO, Kim HG, Lee TH, Kim WJ, Cho WY, Cho JY, Lee JS. A case of asymptomatic aspiration of a capsule endoscope with a successful resolution. Gut Liver. 2010;4(1):114-6. [CrossRef] [PubMed]
  5. Buchkremer F, Herrmann T, Stremmel W. Mild respiratory distress after wireless capsule endoscopy. Gut. 2004;53(3):472. [CrossRef] [PubMed]
  6. Ding NS, Hair C, De Cruz P, Watson J. Education and Imaging. Gastrointestinal: symptomatic bronchial aspiration of capsule endoscope - a significant complication. J Gastroenterol Hepatol. 2013;28(5):761. [CrossRef] [PubMed]
  7. Nathan SR, Biernat L. Aspiration--an important complication of small-bowel video capsule endoscopy. Endoscopy. 2007;39 Suppl 1:E343. [CrossRef] [PubMed] 
  8. Pezzoli A, Fusetti N, Carella A, Gullini S. Asymptomatic bronchial aspiration and prolonged retention of a capsule endoscope: a case report. J Med Case Rep. 2011;5:341. [CrossRef] [PubMed] 
  9. Schneider AR, Hoepffner N, Rösch W, Caspary WF. Aspiration of an M2A capsule. Endoscopy. 2003;35(8):713. [CrossRef] [PubMed] 
  10. Bredenoord AJ, Stolk MF, Al-toma A.Tabib S, Fuller C, Daniels J, Lo SK. Unintentional video capsule bronchoscopy. Eur J Gastroenterol Hepatol. 2009;21(5):593. [CrossRef] [PubMed] 
  11. Tabib S, Fuller C, Daniels J, Lo SK.Sepehr A, Albers GC, Armstrong WB. Asymptomatic aspiration of a capsule endoscope. Gastrointest Endosc. 2004;60(5):845-8. [CrossRef] [PubMed]
  12. Sepehr A, Albers GC, Armstrong WB. Aspiration of a capsule endoscope and description of a unique retrieval technique. Otolaryngol Head Neck Surg. 2007;137(6):965-6. [CrossRef] [PubMed]
  13. Kelley SR, Lohr JM. Retained wireless video enteroscopy capsule: a case report and review of the literature. J Surg Educ. 2009;66(5):296-300. [CrossRef] [PubMed]

Reference as: Baratz DM, Till S. Wireless capsule endo bronchoscopy. Southwest J Pulm Crit Care. 2014;8(3):183-7. doi: http://dx.doi.org/10.13175/swjpcc014-14 PDF

Read More
Rick Robbins, M.D. Rick Robbins, M.D.

Bronchoscopic Cryoextraction: A Novel Approach for the Removal of Massive Endobronchial Blood Clots Causing Acute Airway Obstruction

Bhaskar Bhardwaj MBBS (bhaskar_bhardwaj@hotmail.com)1

Himanshu Bhardwaj MD (himanshu-bhardwaj@ouhsc.edu)2

Houssein A. Youness MD (houssain-youniss@ouhsc.edu)2

Ahmed Awab MD (ahmad-awab@ouhsc.edu)2

 

1Indira Gandhi Medical College, Department of Pulmonary Medicine and Tuberculosis,  Shimla, Himachal Pradesh, India

2Pulmonary Medicine & Critical Care, University of Oklahoma Health Sciences Center, Oklahoma City. USA

 

Abstract

Acute airway obstruction due to large blood clots is known to cause life threatening hypoxemic respiratory failure which can be challenging to diagnose and manage. Different bronchoscopic modalities like rigid bronchoscopy, forceps, snares and catheters can be used to extract these obstructing blood clots but each of these different methods have their own limitations.  We describe a patient with iatrogenic endobronchial bleed with acute airway obstruction due to massive blood clot successfully managed using ‘cryoextraction’. This technique has been described as the treatment of choice for this clinical situation and this case highlights the fact that this technique can save patients from more aggressive invasive procedures. 

Introduction

Bronchoscopic cryoextraction using a cryoprobe is an infrequently used   therapeutic modality for the removal of tracheobronchial tree foreign bodies, especially those containing sufficient water or freezable liquid (1). This technique uses a liquid cryogen or coolant (usually nitrous oxide, nitrogen, or carbon dioxide) which is delivered under pressure to a specially designed cryoprobe that can be passed through the working channel of the flexible bronchoscope (2).  We present a case of acute life-threatening airway obstruction caused by large iatrogenic blood clots which was successfully managed using cryoextraction.

Case Report

A 54 years old male with history of renal transplant and chronic immune suppressive therapy was admitted to the intensive care unit with productive cough, fevers and dyspnea of 3 days duration. His initial vital signs showed blood pressure at 140/100 mm Hg, pulse 110, respiratory rate at 36, temperature 102 degree Fahrenheit and initial oxygen saturation of 70 % on supplemental nasal cannula oxygen at 4 liters/min.   Physical examination revealed diffuse bronchial breath sounds in the right lower lung fields and chest radiograph showed consolidation in the right lower lobe. (Figure 1).

Figure 1. Pre BAL chest radiograph showing right lower lobe consolidation consistent with pneumonia.

Arterial blood gas analysis was consistent with partial pressure of oxygen (PaO2) at 40 mm Hg. Patient remained hypoxic despite supplemental oxygen and eventually required endotracheal intubation with mechanical ventilation due to hypoxic respiratory failure. Patient was also started on empiric antibiotic therapy with ceftriaxone and azithromycin for severe community acquired pneumonia requiring intensive care unit care. Unfortunately, patient’s clinical condition deteriorated in next 48 hours despite continuous antibiotics. His oxygen requirements kept on escalating on mechanical ventilation besides continuous ongoing fever.

At this point, we decided to perform a bronchoscopy with a plan for bronchoalveolar lavage (BAL) given the high risk for atypical lung infections secondary to chronic immunosuppression in this patient. Airway examination during BAL showed extremely friable endobronchial mucosa with thick purulent secretions in the right lower lobe bronchi. Unfortunately, a massive endobronchial bleeding caused by an iatrogenic bronchial mucosal tear complicated the procedure. The most likely cause for this bleeding complication was bronchoscope induced mucosal trauma accentuated by vulnerability of the mucosal capillaries due to ongoing immunosuppression and pneumonia in this patient. BAL was terminated but patient became extremely hypoxic despite increasing fraction of inspired oxygen from initial 50% to 100%. Acute rise in peak airway pressures to 56 cm H2O were also noted. An urgent repeat chest radiograph showed worsening of right lower lobe consolidation with new atelectasis suggestive of an acute airway obstruction (Figure 2).

Figure 2.  Post BAL chest radiograph showing acutely worse right lower lobe infiltrates, consistent with atelectasis and acute airway obstruction due to massive blood clot.

Repeat flexible bronchoscopic exam showed a massive blood clot extending from right main stem bronchus to lower bronchi obstructing the bronchial lumen almost completely. Removal of blood clot was felt to be necessary to improve the hypoxia. Initial attempts to suction the endobronchial clots through flexible bronchoscope and forceps extraction were unsuccessful due to extremely friable nature of the fresh blood clot. We decided to use cryoextraction to remove the endobronchial clot emergently.

A flexible cryoprobe (ERBE cryotherapy system – 1.9 mm size cryoprobe) was extended through the working channel of the bronchoscope into the bronchi, was applied to the clot & frozen for 10 seconds. Frozen clot got firmly attached to the probe and it was successfully pulled out in one large piece (Figure 3).

Figure 3. Massive blood clot extracted from airways, attached to the cryoprobe.

This resulted in immediate improvement in patient’s oxygenation. Patient remained on mechanical ventilation and a repeat bronchoscopic airway examination next day did not show any further bleeding. A non-bleeding mucosal tear in the right main bronchus was identified as the possible source of initial bleed. Patient eventually improved with continued treatment; he was successfully extubated after one week of mechanical ventilatory support.  He was discharged home after total 2 weeks of hospitalization.   

Discussion

Acute airway obstruction due to endobronchial blood clots is an unusual, but not a rare event which can develop in variety of clinical settings like various pulmonary infections, bronchial carcinoma, intrathoracic trauma etc. Some of the common interventions reported to cause acute airway bleeding and subsequent bronchial obstruction due to blood clots include: Iatrogenic mucosal damage from suction catheter manipulation, bronchoalveolar lavage, transbronchial biopsy and tracheostomy placement (Table1) (3).

Clinical consequences of the acute bronchial obstruction can range from minimal impact on respiratory function to life threatening ventilator failure. Pertinent physical examination findings in these patients include decreased or absent breath sounds with occasional inspiratory or expiratory wheezing heard over the affected lobe or lung. Among mechanically ventilated patients, acute rise in peak inspiratory pressure (above 60 cm H2O) with decreased tidal volume are some other notable findings. One unusual presentation of massive endobronchial bleeding in mechanically ventilated patients occurs when the clot adheres to the distal end of the endobronchial tube resulting in ball-valve type obstruction. In this situation, the clot acts as one-way valve allowing only the inspiratory flow into the lower respiratory tract but blocking the expiratory flow. This mechanism can result in unilateral or bilateral lung hyperexpansion, thus increasing the risk of tension pneumothorax. Urgent endobronchial tube exchange in this situation can be lifesaving (3). The extent of hypoxemia due to endobronchial blood clot obstruction depends on the site, degree of obstruction and underlying condition of the lungs (3). Typical imaging findings include lobar or segmental atelectasis or air column cut-off of the trachea and main stem bronchi. The diagnosis is confirmed by direct visualization of the clot through flexible bronchoscope. Initial efforts targeted at the removal of the blood clot involve suctioning and grasping forceps extraction of the clot through a flexible bronchoscope. However, these methods often prove unsuccessful due to the friable structure of the blood clots. Moreover, suctioning through the flexible bronchoscope could pose a risk of re-bleeding. Other management options include rigid bronchoscopy, Fogarty catheter dislodgment of the clot and sometimes the use of topical thrombolytic agents with partial dissolution of clot aiding in suction removal of the clot in piecemeal fashion. Rigid bronchoscopy with clot extraction was used to be the treatment to choice for the management of acute obstructing endobronchial blood clots but it requires general anesthesia and may not be as readily available as needed for these acutely sick patients (4,5).

Cryoextraction using flexible cryoprobe is an underreported novel approach which can be successfully used in removal of large blood clots from the airways. One of the first descriptions of the use of cryoextraction in the removal of endobronchial blood clots was given by Mehta et al in one of their review about various interventions used in tracheobronchial foreign body extraction (6). This method allows freezing of the water component of the blood clots, leading to their removal in en-bloc. Additionally, freezing also has a hemostatic effect through vasoconstriction and rapid slowing of the circulation. Cryoextraction can also be used to extract mucus plugs and other foreign bodies containing some amount of freezable liquid. Under circumstances in which a foreign body does not have any or enough water content, one may consider spraying saline over the object and immediately freezing the foreign body; thus allowing successful cryoextraction. Freezing also leads to shrinking of the foreign objects, thereby easily separating them from inflamed mucosa and facilitating their removal. An additional advantage of this technique is the shorter learning curve needed to utilize the cryoprobe compared to the prolonged training required to master rigid bronchoscopy (7). One concern expressed about the cryoextraction of the massive endobronchial clots is that a large ‘frozen clot’ might be difficult to extract through the smaller sized endotracheal tubes and, if dislodged in that process, could lead to obstruction of the ET tube. 

Conclusion

Our case report illustrates the successful use of cryoextraction as a safe and cost effective tool which can be used in the quick removal of large airway clots causing symptomatic airway obstruction. This modality should be considered as the first line treatment in this clinical situation.1 Cryoextraction method can also spare patients from more invasive procedures like rigid bronchoscopy often used in these scenarios.6 In the absence of well-designed studies, this method must be objectively compared with other methods and more cases are needed to be analyzed in future studies.    

References

  1. Weerdt S, Noppen M, Remels L, et al. Successful removal of a massive endobronchial clot by means of cryotherapy. J Bronchol. 2005; 12:23-24. [CrossRef]
  2. Rafanan AL, Mehta AC. Adult airway foreign body removal. What's new? Clin Chest Med 2001; 22:319. [CrossRef]
  3. Arney KL, Judson MA, Sahn SA. Airway obstruction arising from blood clot: three reports and a review of the literature. Chest. 1999; 115(1):293-300. [CrossRef] [PubMed]
  4. Schummer W, Schummer C. Hemorrhagic Tracheobronchial obstruction. J Bronchol. 2001; 8(3):236. [CrossRef]
  5. Homasson JP, Vergnon JM .Cryotherapy to extract obstructing blood clots. J Bronchol 2002;9:158-9. [CrossRef]
  6. Mehta AC, Rafanan A. Extraction of airway foreign body in adults. J Bronchol. 2001; 8:123–131. [CrossRef]
  7. Rubio E, Gupta P, Ie S, Boyd M. Cryoextraction: a novel approach to remove aspirated chewing gum. Ann Thoracic Med. 2013; 8(1):58-59. [CrossRef] [PubMed]

Conflict of Interest disclosures: No financial or nonfinancial conflicts of interests exist for any of the involved authors.

Reference as: Bhardwaj B, Bhardwaj H, Youness HA, Awab A. Bronchoscopic cryoextraction: a novel approach for the removal of massive endobronchial blood clots causing acute airway obstruction. Southwest J Pulm Crit Care. 2013;7(3):184-9. doi: http://dx.doi.org/10.13175/swjpcc112-13 PDF 

 

Read More